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Comparison of Tyr in H2O and D2O at 244 nm excitation
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Comparison of Tyr-2 in H2O and D2O at 244 nm excitation
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Tyr-Cys-Ag 785 nm exc

Tyr-Cys-Ag 532 nm exc

Tyr-Gly-Cys-Ag 785 nm exc

Tyr-Gly-Cys-Ag 532 nm exc

Tyr-Gly-Gly-Cys-Ag 785 nm exc

Tyr-Gly-Gly-Cys-Ag 532 nm exc

Peaks don't change much with peptide length or excitation wavelength

For excitation off plasmon resonance (785),
8a and 8b peaks die with increasing chain length

For excitation on plasmon resonance (532),
8a and 8b peaks remain the same with 
increasing chain length

Chromophore

Increasing distance between chromophore 

and a particular (C=C stretch) mode

PGTyr TyrGlyGlyCys

C=C “reporter”, ~2200 cm-1

Abstract
To investigate changes in the resonance Raman in response to intermolecular interactions, we used 

an experimental and theoretical study of two series of peptides containing tyrosine and cysteine, 

and tyrosine and L-C-propargylglycine (PG), in solution, and in contact with the surface of titania 

anatase nanoparticles.  Four technical barriers were shown in the course of this study.  The first 

barrier was the incorrect assumption that high lying electronic states could be neglected. Our results 

show that for tyrosine, high energy electronic states out of resonance with the excitation can 

influence the Raman response and that intermolecular interactions can act on the molecular 

polarizability through these states.  Three of the technical barriers were not overcome: 1) correct 

preparation of amino acid or peptide samples in close contact with the nanoparticle surfaces where 

signal predominantly arises from molecules on the surface, 2) correct calculation of peptides in 

contact with a transition metal oxide including the excited electronic states, 3) correct selection of 

test molecules that demonstrate change in response to the presence of a surface.

Introduction
Raman spectroscopy is a very important analytical tool because it has such a high degree of 

chemical specificity.  This spectroscopic approach is highly applicable to a number of Army 

missions such as the sensing of hazardous materials, including explosives, toxic chemicals, and 

pathogenic organisms, or obtaining an understanding of how these toxic materials affect biological 

systems, such as the binding of organophosphates to acetylcholinesterase. However, low 

sensitivity limits the utility of this powerful technique.  In recent years, a number of methods for 

overcoming sensitivity limitations involving Surface Enhanced Raman Spectroscopy (SERS) or 

Resonance Raman Spectroscopy (RRS) have been demonstrated.  These methods, such as RRS, 

exploit the selectivity of Raman spectroscopy while taking advantage of the electronic structure of 

the target molecule to amplify the Raman signal.  

RRS depends on resonance between the excitation laser and electronic states within the analyte 

molecule.  Only normal mode vibrations involving the atoms within the chromophore experience 

enhancement. While this selectivity towards vibrational modes within a chromophore is an 

advantage for some applications, it is also desirable to permit vibrational modes outside of the 

chromophore to experience resonant enhancement in a controlled manner.  An understanding of 

how vibrational modes that do not directly involve the chromophore interact with the excited 

electronic states of that chromophore may permit controlled enhancement of these modes.

Methods
Theory: For the calculation of RRS and RRS excitation profiles, the sum-over-states approach is used.  

Excitation profiles are the RRS cross section of a given vibrational mode as a function of excitation 

energy.  Within the simplified sum-over-states approach, the resonance Raman cross section is 

represented as a sum over excited electronic states and is obtained by straightforward differentiation of 

the sum-over-states expansion of the frequency-dependent polarizability with respect to a vibrational 

normal mode. The differential Raman scattering cross section for a given normal mode Q can be 

written as

Where w is the excitation frequency, wQ is the vibrational frequency of mode Q, c is the speed of light, 

and sQ is the angle-averaged Raman scattering tensor. The Cartesian component mn of the Raman 

scattering tensor is computed as

where Wk is the electronic state excitation energy of the kth electronic state, m0k
m and m0k

n are the m

and n components of the 0→k transition dipole moment, and gk is its linewidth. The linewidth gk of the 

kth excited electronic state cannot be computed from first principles. Thus, we approximated gk in 

resonance Raman spectra by the linewidth fitted from the experimental absorption spectrum.

Experiment: Non-resonance Raman, RRS, and SERS measurements were performed both for 

solution and solid phase samples.  The solution phase samples for the cross section measurements 

were prepared by dissolving the material of interest in ultrapure water.  To mitigate the 

photodegradation of the tyrosine solutions, the samples were magnetically stirred in small glass cups 

during the measurements, so that the laser beam was continuously exposed to fresh sample.  The 

cups were covered with Ultra Violet-transparent quartz cover slips to prevent evaporation of the 

acetonitrile internal standard.  

Conclusions
A study has been performed to further the understanding of the connection between 

intermolecular induced changes to the electronic structure and the resulting response in the 

RRS.  For the system of tyrosine and tyrosine containing peptides on titania, we 

encountered four significant technical barriers.  The first involved obtaining an 

understanding of the influence of destructive interference in the sum of states for these 

systems.  The hypothesis used at the beginning of this study had made the assumption that 

only electronic states in resonance with the optical excitation and that the ground electronic 

state had significance, and that intermolecular interactions could only significantly affect the 

RRS through these states.  However, our study of destructive interference between states 

demonstrates intermolecular interactions can affect the RRS through electronic states that 

are much higher in energy than the excitation.  Although there was success in surmounting 

the first technical barrier, we did not surmount the last three barriers.  

For preparation of samples on titania, all methods using aqueous deposition did not produce 

controlled amounts of peptides evenly distributed on the surfaces.  Vacuum techniques are 

likely necessary to correctly prepare peptides on titania.  The third technical barrier not 

overcome was the correct modeling of the titania surface, where the electronic structure 

could not be found even for a fixed nuclear geometry.  This is likely due to the difficulty in 

modeling the electronic structure of transition elements such as titanium, and if this is so, 

simulation with larger basis sets may be necessary.  Lastly, PG did not prove to be a 

suitable “reporter” residue.  This is most likely due to the fact that the enhancement coming 

from the aromatic ring in tyrosine acts over a much shorter distance than anticipated.

In conclusion, although several technical barriers were not overcome, this investigation did 

shed light on the influence of high energy electronic states through destructive interference.  

Furthermore, this study revealed the experimental approaches that would be necessary to 

investigate further the connection between intermolecular interactions, electronic structure, 

and the RRS spectrum.
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Measurements of RRS of Tyrosine on Titania Nanoparticles

Measurement of RRS in water and deuterium oxide

Measurement of RRS of L-C-propargylglycine in aqueous 

solution are dominated by tyrosine.

Experimental validation of theoretical excitation profiles 

Destructive Interference from high 

energy states 

On and off plasmon resonance SERS for different 

peptide lengths. When on plasmon resonance, all 

modes enhanced equally by long range 

electromagnetic mechanism.  When off plasmon 

resonance, tyrosine ring modes enhanced by a 

chemical mechanism, and ring modes become very 

sensitive to chain length.
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Theoretical electronic structure validated 

with UV-Vis absorption measurements

Resonant Raman theoretical spectra and relative peak intensities validated with experimental 

measurements.


